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Asymptotic methods are used to compute the stress intensity coefficients 
at the tips of a thin cut with smoothly closing edges, and the asymptotic 
form of the potential energy is determined. 

Amongst various mathematical models representing real cracks, the 
"crack-cut" model is of special interest, since it requires the simplest 
mathematical methods in its study. However, the model does not reflect 
some of the properties of actual cracks, in particular the crack does not 
respond, within its framework, to loading in the direction of the cut. 
The case of a thin cut with smoothly closing edges ensures good agreement 
with reality, while retaining the simplicity of the cut**. The present 
paper deals chiefly with the explanation of how sensitive such cracks are 
to the loading along the cut. 

1. Formulation of the probleu and preliminary discussion. Let B be a region 
in the Re plane, containing a segment M = (5: z2 = 0, 11~ ]<a), hj-((x1)= ah*'(q);h*'are functions 

smooth on [-a,~] such that 4"(a) = h*"(-U) = h*" (a) = h*"' (-a) = 0. We introduce the regions 

G, = {z: 1 xl 1 < a, --Eh_(Q<52< eh+(s,)}, 62, = 61\,G, depending on the small positive dimension- 
less parameter E. Let us consider the plane problem of the theory of elasticity 

@.u (I, E) + (A + p) glad div u (x, E) = 0 in 62, (1.1) 
ecn)(u; I, S)=p*(r~, E) on ye*={z~ aG,:&x?.>O) (1.2) 
d") (u; 5, e) = p(x) on 862 (1.3) 

where p,pf are smooth loads, u is the displacement vector, u 
are the Lam& constants and n = (a,, n,) 

is the stress tensor, h, P 
is the external normal for the region 8,. 

The problem concerning the effect of the transverse size of the crack engaged the attention 
of workers for a long time. It was shown in /2, 3/ (see also /l/) that it is best to use 
asymptotic methods with such problems, and the stress-deformation state near a thin cut with a 
smooth boundary was investigated. In this case a boundary layer appears near the tip of the 
cut, described with help of a solution of the problem on the outside of a parabola. The 
mathematical treatment of these problems was continue% in /4/. 

The present paper also uses expansions in series in the small parameter e. However, 
unlike the previous papers, the restrictions imposed here on the geometry of the boundary near 
the crack tips are such that the boundary layer gives rise to an insiginficant (uniformly 
exponentially small in e) perturbation (see /5/j. A power series in e appears away from 
the crack tips, and therefore the exponentially small terms should be neglected. Thus, below 
we concentrate our attention on studying the effect which the curving of the middle part of 
the crack edges has on the stress-deformation state. 

We will assume that the external load is selfequilibrated, i.e. 

s P(")ds=-2 5 p*(E,rl)dS 
BP f Y,f 

Since the arc length element ds is equal to &(1 + e*h~‘(zl)*)‘M.zl on ye*, the last 
equation takes the form 

S p(5)&=-_ 5 $(e, a)(1 +b*L’@~)~)“~h 
89 S-0 

Therefore we shall assume that in (1.2) p* (e,zl)=(i +eah*‘(s,)*)-%q*(z,). It is clear that 
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**The need to investigate such cases was pointed out in /l/. 
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P* (8, 4 = qf (~4 - ‘l,e2hlt’ (Mqf (4 + 0 (Em) 

Let us write e = 0. Then the region 52, will be transformed into the region 62,= &?\I@ 
with a crack M, and the boundary value problem (l.l)-(1.3) will become 

pAu"(z) + (h + p) grad div u"(z) = 0 in zto (1.4) 

u*j (If, 21, &O) = 3q.f*, i = 1, 2 when i~,l<s U.5) 
#y(n) (UC*); x) = p (cc) on C&Z (1.6) 

We know (see e.g., /6, 7/) that the solution u" of problem (1.4)-(1.6) admits, near the 
tips 0, =(-&,O) of the crack M, of the asymptotic representations 

(1.7) 

((r+, 0,) are polar coordinates with centres Ok, and polar axes directed along the segment 
M,C,* are rigid displacements of the points O~..K&, are the stress intensity factors). 

The results of /6, 8, 9/ imply that the coefficients a$,,, are given by the formulas 

p (5) p *) (2) ds + 
rt -a 

(1.8) 

where t(A *I are the non-energetic solutions of the homogeneous ,(q”sO, PEZO) problem (1.4)- 
(1.6) bounded everywhere in a,\ (O*), with the following asymptotic form near Ok: 

f;h*-1fr, e)S(2nr*)-'~*[2(l + q-1 ((2x + l)cos% - 
(1.9) 

Sk 3cos--i-, 3 sin -$-(2x-- I)sin +) +0(i) 

I;% t)(r, @)I=(2nr_&'/*[2(1 + ~)l-~ ((2x + f)sin Z$ - (Il.10) 

sin.+ , (2x - 1) COS 3 - CO3 3) -I- ow 

2. Asymptotic form of the intensity factors. since the functions h.f are 
smooth and vanish, together with their derivatives, at the ends of the segment !-&al, it 
follows that the solution of problem (l.ll-(1.3) admits, near the points O.J., of the represen- 
tsaz~ (1.7) (see /7/j. Let us find the asymptotic form of the coefficients K,+(e) and 

b . 
Following /lo-12/, we shall seek the asymptotic expansion of the solution of the boundary 

value problem (l.l)-(1.3) in the form 

ub, e)- f$ eku(k) (CT) 
k==o 

(2.1) 

where IX@) are solutions of problems of the form (1.4)-(1.6) in the region 0, with certain 
right-hand sides. We note that by virtue of the constraints imposed on the function 4 
problem (l..l)-(1.31 must be regarded as a problem in a region with a regularly perturbed 
boundary. 

Let us consider the upper and lower edge =@ of the slit Gg. The unit vector of the 
internal normal (with respect to Ge) to y,*, has the form 

n (z,, a) = (1 -I- e*h*' (z#)-'I* (e&k (5d. T+) 

Therefore 

and hence we have, when zz =-&&.(zJ 



Applying Maclaurin's formula 
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(2.2) 

(the subscript k following the comma denotes differentiation with respect to zx), we reduce 
the right-hand side of relation (2.2) to the form 

Combining expansions (2.1) of the solution of problem (l.l)-(1.3) with formulas (2.3), 
we find that the vector u(O) is a solution of problem (l-4)-(1.61, and the vector II(*) satisfies 
Eqs.(1.4) and boundary conditions 

uj"'(U; rl* f&t(rJ) = iU*j (x; sir 9) + 

a 0%' ($1) %j (Ui 213 +o) - 4 (51) %a,, (u; Xl, ff30)) T 

‘/*e” @* (d%aj,*, (U; 511 to) - =* (Xl) h,’ (x1) x 

UII,S (U; IL, k0) - 4 (4’ 4j (U; zlr 20)) + 0 (e*) 

(2.3) 

ot*) (u@f; x) = 0 on 862 (2.4) 

Q (u(‘f, 51, rzt(t) = z@* 6%) 4j (u(O? ;tl, &O) T (2.5) 
kt 6%) %, I (ut”? ~1, +o)whenI 2% I< a 

Eqs.f2.5) can be transformed by virtue of the equations of equilibrium as follows: 

UQ (UW XI, & 0) = + (h*$j, 1 (Uco’; Zh * 0) f (2.6) 
h*’ (a) uxj (u(O); a, _t 0)) = 

f -&-h(Q) %j (UC”; % I!I 0)) when IZI/ < a 

Since 4 (;e,)= 0 (rks) as rf -+O, we find, according to (1.71, that the right-hand side 

of (2.6) is oftheorder of O(r*"*) as rk-+0. This means (see /7/) that the displacement field 
u("3 satisfying (2.4) and (2.6) admitsofa representation of the form (1.7) whose coefficients 
will be denoted by K$*rt. We also obtain from formulas (1.8) the following expression for the 

stress intensity factors: 

cs =g(h*t 1 ( 31 u(l) u(o); 4, * 0)) g(+r $1 (xl, * 0) dxl --_ 
f-0 

1 a 
2v= -(1 P h* (Xl) au) (u(O); Xl, f 0) - y) 6% * 0) a21 

fJfj) = (Ulj, %j) 

An analogous formula holds for K&p 

Let us determine the next term of the asymptotic expression. Taking into account in (2.1) 
and 12.3) terms of the order of O(G) (which include the term e*~(.z,)'q* (zy2 I in the represen- 
tation of the right-hand sides @ of the boundary conditions (1.2), we find that U* should 
be subject to Eqs.(l.4) with boundary conditions (2.41, and 

Us(@); $1, &O)= &[+h* (.zt)sU~j,%(U(o); sir -Co)& 

h* (“1) qj (tot Zl, & 0)) + ‘/a h*’ (2$ %j (u(O); a, f 0) rfi 

‘/s hk’ @I)’ qj* (51) when I~II< a 

(2.7) 

The right-hand side of Eq.(2.7) is oftheorder of O(r;!g) as r&-+0, and formulas (1.7) 
with coefficients K&l hold for the displacement field II(*). 

The process of constructing the coefficients of the asymptotic expansion can be continued. 
The resulting representatibn of the solution of problem (l.l)-(1.3) is justified using standard 
methods (see e.g. /lo-12,'). As the result we have the following asymptotic formulas for the 
stress intensity coefficients: 
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KJi: (8) = K&,) + “K&l> + &‘f@,,) -t 0 (es) (“‘X) 

3. Asymptotic form of the potential energy. Let us consider the potential energy 
functional 

l-I (E) = - + p(x) u (e, x) ds - -+ z $ pf (e, ~1) u (e, r) ds 
a -+ ye+ 

(3.1) 

corresponding to problem (l.l)-(1.3), and obtain its asymptotic form as e-to. According 
to the expression for the load p* given in Sect.1, we have 

(3.2) 

The following expression for the displacements holds by virtue of the asymptotic formula 
(2.1): 

$ p(x) u (e, x) ds = ,$ ej s p(x) u(j) (x) ds -+ 0 (19) 
an z=o an 

Since p (x) = d") (u(O); r), #)(~(j), r) = 0 when j = 1, 2 on 8Q, we use the Betti formula 
to obtain the relations 

S p(x) u(j) (2) da-_ JQ {u(n) (do); x) uo) cx) _ b(n) (u(j); a) ~(0) (XT)) A-= 
BP 

(3.3) 

Further, for the integrals in MS from the right in (3.2) we have 

i q*(rl)u(e, 21, i&(rr))dzr= 

a 

-ai t 
* qf (21) u@)(Ja, &O)+ t: U(')(II, fO)& 

[ 

~~(a)a~(a.rto)] + es [uya, to)* 

(3.4) 

Combining expressions (3.3) and (3.4: we obtain the following formula from (3.2): 

II (E) = rI, + En, f e*fI, + 0 (s") (3.5) 

II,=+ s p (5) u(o)(z) ds - +- r, { q* (4) u(o) (51, + 0) drr 
ac3 * --a 

where n,, is the potential energy corresponding to probl.em (1.4)-(1.6). Collecting in the 
right-hand sides of (3.3) and (3.4) the coefficients of e, we obtain 

II,= -+c f (+Yyu(q Xl, fO)d~~(9, fO)f (3.6) 
f -a 

q* wk@d~ aucot (a, _iof}dz, 

Let us transform expression (3.6) using relations (2.6) and (1.5). We have 

rI,=+J$ 1 [$-(h&r)e(Q(zN; a ,O)u@~(zl,fO)f (3.7) 
* --a 

h+ (31)a@)(u(0); Xl, *q sz, au(") (XL, f 0)] dxr= 
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Let us find the difference &.(u(');z,) appearing in (3.7) within the curly brackets. We 
have 

Thus 

(3.8) 

Similarly, collecting in (3.3) and (3.4) the coefficients of 8' and taking into account 
(1.5) and (2.7), we obtain 

-$- 9’ (Xl) hf (QY -fg(xz, iO,)dXF 

0x1 after integrating by parts, 

n,=_+z { (hr(Jt)["(')(U'";x~,+O)~(~l, *(Q-- 

f --a 

0 (u@); Xl, f0) g (a, tot I!I 

-$*w* az, ( 
[ 

do(') u"'; q, FO) q$(xx* ItO)- 

u@)(u@); xx, -f- 0) - 

Finally, let us consider expressions (3.7) in the case of a slit Ge with free edges, 
i.e. when qf=O. Then we obtain the following relations for the boundary conditions (1.5): 

nr:a (sr, C&O) = --us:; 6% I!$) 

u$ (51 +0) = -a (2p + h)-'u::: (x1, *o) )- 

Therefore 

and we obtain, in accordance with (3.5), the formula 

(3.9) 

where v and E arepoisson's ratio and Young's modulus, respectively. 
Since 4~ (p + h)(2~ + h)%(o) 1,1 = a,,(~(~)) as the edges of the crack M, we finally obtain the 

expression 

rl(e)=lIo-e~~ s &(x~)ulI(u@); Xl, *opkl- OV) (3.10) 
f--rr 

4. Exan~ples. lo. Let us investigate the uniaxial extension of a plane with a thin 
slit Ge described in Sect.1. We shall assume here that the crack edges are load-free, i.e. 
q*=o in (1.21. The boundary conditions (1.3) shouldbeinterpreted as follows: 
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Ull (u; r) -+ p cos* @; u12 (u; x) -p sin 3 c*s 3 

028 (K x) +psinZ@ as ]zl+~0 

where p is the load intensity and $ is the angle of inclination, 

The stresses constructed according to the solution &) of probl_em (1.4)-(1.6) are given, 
in this case, by the formulas (see e.g. /6/) 

01, (JO); 2) = p {cos2 fi + sina p[ReZ (2) - z,Im Z'(z)] f (4.1) 
cos psin fl [2 Im 2 (z) + z8 Re Z' (z)]) 

opt (u(O): I) = p {sin2 f3 + sin2 j3 [Re 2 (2) + z% Im Z'(z)] - z, co.9 b x 
sin p Re 2' (2)) 

OS1 (t&(0'; I) = p {sin 6 cos $3 - "a sin% 6 Re Z'(a) + cos pain @x 
[Re 2 (a) - q Im Z' (z)]} 

Substituting (4.1) into the boundary conditions (2.6) we obtain, for the vector u(l), 

0, (U(r); $1, 10) = 0 (4.2) 

a~1(u(r);+1,zhO)= rtp& h+(s) 
( I 

sin2fi 
cos2fi T --=====E~ 

I/a'- 21' 1) 

The traces ofthevector functions @+) 
are given by therelations (see /6, 13/) 

governed by the relations (1.9), (1.10) on M*, 

Then from (4.2) we obtain 

where H(z~)=h+(q)+ h_(+) is the reduced crack width. Therefore, when j=Z, formula (2.8) is 
specifically as follows: 

(1 

K$ (e) = P 
I/na I 

’ rraain3cosB+e 
!I 

[h, (XI) - h_ (a)] cos 2f~ - (4.3) 
-lz 

rrsin2~ 
If (Xl) = 

I/a= - zp 1 

a dq 

- (a - 5,) fa’ - zp I 
i-O(eT 

Since K&) = 0, it follows that formula (2.6) is lacking in content when j=f. Let us 

make it more accurate, taking into account the second term of the asymptotic expression for 

". From (2.7) it follows that the averaged values of the sttesses ~~(~(~);=~,~~) are zero on 
the segment [-a, of. Moreover, ~Y*+)(z~, f0) = eonst. This means that by virtue of formula (1.8) the 

first boundary condition in (2.7) makes no contribution towards the coefficient KG,,). 

Let us transform the second boundary condition. According to (2.7) and the equations of 
equilibrium, we have 

GS (+ ~1, =t: 0) = & ( I/& (Q 612,a (u(O); $1, fo) $ 
a 

h (=l)x (h (~1) on (@;=lt 9) )- - $ (W (0% (u.("); *l;z'c 0)) 

Therefore 
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Finally, when j= 1, formula (2.8) becomes 

(4.4) 

Let us discuss expressions (4.3) and (4.4) obtained for the stress intensity factors in 
the problem of uniaxial loading of a plane with a crack GS. We shall consider the case of 
transverse extension (p =P>O, B= n/2) and longitudinal compression @= -P<O,B= 0). By virtue 
of (4.3) and (4.4) we have 

(in the first case K&,,)= Pi/z and in the second case Kha)=O). In both cases the coefficient 

KS+ (8) is equal to zero. In the case of longitudinal compression the coefficient K,+ (e) is 
not, generally speaking, sign-constant. However, when the contour is symmetric (the functions 
h*&) are even), the coefficient is positive. Moreover, even when the contourisnotsymmetric, 
the sum &+(e)+ K;(e) of the intensity coefficients at both tips of the crack is greater 
than zero. Actually, similar assertions also hold for the addition Kf(e)-KfC+l,aj in the case 
of transverse extension. 

2O. Let us consider the problem of the uniaxial compression of a bounded region 4 
introduced in Sect-l, in a direction parallel to the crack axis. In this case we have p*= 0 

and P (2) = -(nl, 0) P, in the boundary conditions (1.2) and (1.3) where p is the intensity of the 
compressive load. Therefore the displacements are given by the formula 

IJo = P (4P (P + VI-' (- (2P f A) =1, hxr) (4.5) 

Substituting (4.5) into (3.9) or (3.101, we obtain 

AlI=lI(e)- 
(l-v') 

h*@l)dz,+G(e') ==-P'T s, + G (e') 
f -0 

W) 

where A', is the area of the crack Ge. Thus the increase in the potential energy when a crack 
appears within the body, parallel to the direction of the compressive load, is largely 
proportional to the area of the crack. 

30 * Let us now apply the results of Sect.3 to the problem of uniaxial extension 
(compression) of a plane with a crack G, discussed in Sect.1. The potential energy of this 
body is infinite, therefore following /14/ we shall discuss the potential energy increment 
All accompanying the appearance of a crack G, in the plane. We shall calculate AlI using 
an example given in /15/. Let Qn be a region containing a circle with centre at the origin 
of coordinates, with the parameter D fairly large. We denote by u(D,e,z) the displacements 
caused by the uniaxial loading of the region QD\%- The loads are of intensity p, and 
are inclined at an angle 0 to the crack axis. In addition let v(z) be a solution of the 
analogous problem in a region without a crack 

v(z) = (2fl)-'p ((co@ jZi - l/,1 (X + p)-3 z1 + co9 fl sin fi z,, (4.7) 
z, cos 8 sin pi_ (sina fi - Vz h(h + *)-l)q) 

and w(e?,z) be the solution of problem (1.11, (1.2) in the region R’\t$., vanishing at infinity 

when p*(e, zf = (3 + s*k”h; (Q)~%* (8. 2). 

where q*(e, z) = - p{eh*'(r,) co9 B i sin 8) (cos 8, sin 8). We denote the potential energies corresponding 

to the problems in QD\G, and Qs by IIs and IID*. Just as in /15/, we find from the results 
of /12/ that 

~(0, 8, 4 = v(x) -t_ w(e, 5) + 0 (D-1) 

1 
n,-II,*=--- 

2 1s 
"rj(~,z)eii (K *)dz+ 

f" (I) 

Q8 

s 
(ru(W; S,S) Qj (w;~*+)dz 

RZG, 

I 

as u-++ ~0, where SiJ are the deformation tensor components. Therefore, we have 

(4.8) 
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Let us compute the integrals on the right-hand side of (4.8). From (4.6) we obtain 

We find the asymptotic form of the second integral in (4.7) using formulas (3.5), (3.8). 
The solution w@)(~,z) of the limit problem (1.4), (1.5) in Ra\M can be written in the form 

w(O) (0, 2) = z @) (2) + W+(r) (5) 

where z(O) and z(r) are the solutions of the same problem with the right-hand sides 
¶*'O &) = *p sin 6 (cos 8, sin fi) 

g+" (21) = - ph*' (2,) co3 @(cos 8, sin fi) 

Therefore we have 

1 s 1 
--- 

2 atj(~;E,Z)eii(w;E,")dz = --T 
s 
bO')(~;e,s)lo(e, t) ds = 

R’\G, OG, 

The last integral is equal to 

i -- 
2 s f'*j( z(O); Z)ttij (2 (0); I)+ ~a~j(~(*); Z)e*j (J~~f;.)]ds + O(@) = 

li*vd 

- +x7 j: p'*'(d"); 51, * 0) + %o("(P; LhfO)] x 

8) (II,: 0) ii:+ 0 (e*) 

(4.10) 

(4.if) 

The traces of the displacement vector z(O) at the edges hf* of the cut M are given by the 

equations 
z(O) (zl, &O) = -& pII-% (1 - v)sin 6 (a* - zlats/l (0.03 @, sin @) 

therefore formulas (4.8)-(4.11) yield the final expression for the potential energy increment 

Thus in the case of longitudinal compression the increase in potential energy accompanying 
the appearance of a slit G, in the plane, is equal to 

- Pa (2lc + W IQ (A + PW'S, -I- 0 (e2) 

which is, as expected, the same as that in formula (4.6). 

1. 

2. 

3. 

4. 

5. 
6. 
7. 

REFERENCES 

CHEREPANOV G-P., Mechanics of Brittle Fracture. Moscow, Nauka, 1974. 
CHEREPANOV G.P., OII singular solutions in the theory of elasticity. In: Problems of the 
Mechanics of a Deformable Solid. Leningrad, Sudostroyeniye, 1970. 

CHEREPANOV G.P., Some basic problems of linear fracture mechanics, Problemy Prochnosti, 
2, 1971. 

GORIN I.S., On the brittle fracture of an elastic plane weakened by a thin notch. Vesti 
LGU, 7, 2, 1982. 

VAN DYKE M.D., Perturbation Methods in Fluid Mechanics. N-Y., Academic Press, 1964. 
SEDOV L.I., Mechanics of a Continuous Medium, 2, Nauka, 1976. 
KONDRAT'YEV V.A., Boundary value problems for elliptical equations in regions with conical 
or apgular points. Tr. Mosk. mat. o-va, 16, 1967. 



107 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

PMM 

MAZ'YA V.G. and PLAMENEVSKII B.A., cm the coefficients in the asymptotic form of the 
solutions of elliptic boundary value problems in a region with conical points. Math. 
Nachr. 76, 1977. 

MOROZOV N.F., Collected Two-dimensional Problems of the Theory of Elasticity. Leningrad, 
Izd-vo LGU, 1980. 

KATO T., Perturbation Theory for Linear Operators. Berlin, Springer Verlag, 1980. 
IVANOV L.A., KOTKO L.A. and KREIN S.G., Boundary value problems of variable regions. 
Differential equations and their applications. Coll. of papers. Vil'nyus, Izd-yo In-ta 
matematiki i kibernetiki AS LitSSR, 19, 1977. 
MAZ'YA V.G., NAZAROV S.A. and PLAMENEVSKII B.A., Asymptotic Form of the Solutions of 
Elliptic Boundary Value Problems when the Regions are Singularly Perturbed. Tbilisi, 
Izd-vo Tbil. un-ta, 1981. 

SI G. and LIBOVITS G., Mathematic theory of brittle fracture. In: Fracture. Moscow, Mir, 
1975. 

GRIFFITH A.A., The theory of rupture. In: Proc. l-st Intern. Congress for Appl. Mech. 
Delft: Waltman, 1925. 

MOROZOV N.F. and NAZAROV S.A., On the problem of computing the energy change in the 
Griffith problem. Studies in Elasticity and Plasticity. Coil. of papers. Leningrad, 
(zd-vo LGU, 14, 1982. 

Translated by L.K. 

U.S.S.R.,Vol.51,No.l,pp.l07-1X,1987 0021-8928/87 $10.00+0.00 
Printed in Great Britain 01988 Pergamon Press plc 

STUDY OF CRACK OPENING USING THE WEIGHTING FUNCTIONS METHOD* 

O.G. RYBAKINA 

Some results of calculations of the opening of rectilinear, disc-like 
cracks under the action of a given system of forces, are given in /l-3/. 
A study of the opening of internal and surface cracks of more complex form 
is of interest, since in a number of cases it enables one to determine the 
depth of the crack from its known opening at the surface. 

Formulas are obtained for the opening of elliptical, internal or 
surface cracks which occur when the body is acted upon by an arbitrary 
static load symmetrical about the plane of the crack. 

1. Let us consider an elastic body with a rectilinear skew crack O<X< 1, internal 
or emerging at the surface 5 = 0. A weighting functions (WF) method was proposed in /4/ 
for computing the stress intensity factors ~SIF) at the crack tip, and the possibility of 
using the method to determine the displacement field was suggested. When the elastic defor- 
mationenergy w(t)and the displacement of the upper edge of the crack v&r, I) are both known 
for a certain external load, the WE' can be found using the formula /4/ 

where E’ = E/(1 - v”) for plane deformation, E’ = E for the state of plane stress, E is the 
modulus of elasticity, v is Poisson's ratio and h(x,l) is independent of the type of loading. 

We havethefollowing formula for the SIF K(1) at the tip s = 1: 

K(Z)==&X)h(X, Z)CZZ (4.2) 
0 


